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 Water is a vital resource whose movement is influenced by various 
factors such as gravity and frictional force. The cross-sectional shape of 
a channel can significantly influence the friction force,consequently, 
affect the flow characteristics. One of the interesting cross-sectional 
shapes to analyze is parabolic because of its unique geometric 
properties. This study aims to conduct a numerical simulation of open 
channel flow within a parabolic cross-section using a modified Shallow 
Water Equation and the Finite Volume Method implemented with a 
staggered grid scheme. The mathematical model used takes into account 
the influence of the parabolic shape through the calculation of 
Manning's friction, which depends on the hydraulic radius. The Shallow 
Water Equations, consisting of the continuity and momentum equations, 
are solved numerically through spatial and temporal discretization. The 
simulations are perfomed using Scilab to generate visualizations of the 
water depth and flow velocity distribution under various geometric 
conditions. This study produces simulations of one-dimensional (1D) 
and two-dimensional (2D) dam-break flows with a parabolic cross 
section and compares them with the rectangular cross-section. The 
simulation results show that the finite volume method with the 
staggered grid scheme provides stable solutions and is capable of 
accurately describing the flow behavior across different channel 
geometries . 
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1. INTRODUCTION 

 The study about fluid flow on an open channel is so important in designing some infrastructures 
around a river or canal such as irrigation or flood mitigation. Open channel geometry, including its cross-
sectional shape and slope, can affect the characteristic of fluid flow [1].  One of the interesting channel 
geometry is an open channel with parabolic cross-section because of the analytical simplicity and its 
application in drainase system [2]. The parabolic geometry offers higher hydraulic efficiency and 
reduces the risk of sedimentation because its shape helps maintain higher flow velocity even at low 
discharge[3]. 

To model the fluid flow in an open channel mathematically, researchers often use the Shallow 
Water Equation(SWE) with some diffetent assumpsions based on the case, i.e. [4],[5],[6],[7]. SWE 
consists of two equations. They are continuity equation and momentum concervative equation. Several 
researchers have examined the fluid flow on an open channel with different cross-sectional shapes such 
as trapezoidal, parabolic, and circular[8],[3],[9]. These cross-sectional shapes influence the 
mathematical models used, particularly because channel geometry can affect the friction force. Hence, 
friction term in the model, i.e Manning friction term, often need to be modified. 

The analytical solutions of SWE is not always easy to be found, moreover if nonlinear terms are 
involved. Therefore, numerical approaches are required to obtain the approximate solution. Various 
numerical methods have been applied, including finite difference and Finite Volume Methods(FVM). 
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FVM is suitable for the discontinious cases. In FVM, many schemes can be applied, such as WENO, 
Godunov-type, or staggered scheme[10]. WENO scheme has the higher accuracy but more complex and 
has a complicated stencil structure[7]. Staggered grid scheme is well balanced and easier to implement 
because it does not need Riemann solver[11]. 

In this study, we develop numerical simulations of fluid flow on an open channel with parabolic 
cross-section in both 1D and 2D, using the FVM with a staggered grid scheme. The changes in water 
depth and flow velocity are analyzed, and the fluid characteristics of fluid in a channel with parabolic 
and rectangular cross-section are compared.  

 
2. Wave Model and Numerical Scheme 

In this paper, we discuss a fluid flow model for an open channel with parabolic cross-section and 
solve it numerically. Consider the inviscid fluid with water depth ℎ(𝑥, 𝑦, 𝑡), horizontal velocity in 𝑥 and 
𝑦 direction respectively 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡), friction force 𝑆𝑓 , gravitational acceleration 𝑔, and bottom 

topography 𝑧. The 2D SWE is employed and expressed as follows[12]. 
 

𝜕ℎ

𝜕𝑡
+

𝜕(ℎ𝑢)

𝜕𝑥
+

𝜕(ℎ𝑣)

𝜕𝑦
= 0 (1) 

𝜕(ℎ𝑢)

𝜕𝑡
+

𝜕

𝜕𝑥
(ℎ𝑢2 +

1

2
𝑔ℎ2) = −

𝜕(ℎ𝑢𝑣)

𝜕𝑦
− 𝑔ℎ

𝜕𝑧

𝜕𝑥
− 𝑔ℎ𝑆𝑓  (2) 

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕

𝜕𝑦
(ℎ𝑣2 +

1

2
𝑔ℎ2) = −

𝜕(ℎ𝑢𝑣)

𝜕𝑥
− 𝑔ℎ

𝜕𝑧

𝜕𝑦
− 𝑔ℎ𝑆𝑓  (3) 

 
The Manning friction force is used and expressed by (4). 
 

𝑆𝑓 = 𝑅 ∙ 𝑛2 ∙ 𝑢|𝑢|         (4) 
 
 

Where 𝑅 is hydraulic radius and 𝑛 is Manning coefficient. Consider the width of the channel is 𝑏, so the 
parabolic cross section is modeled by  

𝐴 =
2

3
ℎ𝑏        (5) 

 
The hydraulic radius becomes the following form: 
 

𝑅 =
2𝑏2 ∙ ℎ(𝑥, 𝑡)

3𝑏2 + 8ℎ2(𝑥, 𝑡)
 

 
      (6) 

 
Eq. (6) is substituted to Eq. (4), hence we get the Manning friction force as follows. 
 

𝑆𝑓 =
2𝑏2 ∙ ℎ(𝑥, 𝑡)

3𝑏2 + 8ℎ2(𝑥, 𝑡)
∙ 𝑛2 ∙ 𝑢|𝑢|       (7) 

  
The 2D SWE in Eq. (1)-(3) is approximated by Finite Volume Method(FVM) with staggered grid 

scheme. Consider the spatial domain [0, 𝐿] and [0, 𝑀]. Then, they are discretized by Δ𝑥 and Δ𝑦 into 𝑁𝑥 
and 𝑁𝑦 grids.  In staggered grid scheme, mass and momentum are calculated in different cell to improve 

accuracy and stability of the calculation[11].  Let the grids in (𝑖, 𝑗) are denoted by 𝑥𝑖 , 𝑦𝑗 , with 𝑖 =

0,1, … , 𝑁𝑥 and 𝑗 = 0,1, … , 𝑁𝑦  , called the full grid. Besides, the grids are denoted by 𝑥
𝑖+

1
2
, 𝑦𝑗   and 𝑥𝑖 , 𝑦

𝑗+
1
2
, 

with 𝑖 = 0,1, … , 𝑁𝑥 and 𝑗 = 0,1, … , 𝑁𝑦 , called the half grid. So, the water depth (ℎ) is calculated in full 

grid, while the horizontal velocities (𝑢 and 𝑣) are calculated in half grid by 𝑥
𝑖+

1
2
, 𝑦𝑗   and 𝑥𝑖 , 𝑦

𝑗+
1
2
. The time 

domain [0, 𝑇] is divided into 𝑁𝑡  grids, hence the time in 𝑛-th step 𝑡𝑛 = 𝑛Δ𝑡. The approximation of ℎ in 

grid (𝑖, 𝑗) at time 𝑡𝑛  is denoted by ℎ𝑖,𝑗
𝑛 = ℎ(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛), and so are 𝑢

𝑖+
1
2

,𝑗

𝑛 = 𝑢 (𝑥
𝑖+

1
2
, 𝑦𝑗 , 𝑡𝑛) and 𝑣

𝑖,𝑗+
1
2

𝑛 =

𝑣 (𝑥𝑖 , 𝑦
𝑗+

1
2
, 𝑡𝑛).   

The mass concervation equation (1) is approximated as follows. 
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ℎ𝑖,𝑗
𝑛+1 − ℎ𝑖,𝑗

𝑛

∆𝑡
+ (

𝑝
𝑖+

1
2,𝑗

𝑛 − 𝑝
𝑖−

1
2,𝑗

𝑛

∆𝑥
) +  (

𝑞
𝑖,𝑗+

1
2

𝑛 − 𝑞
𝑖,𝑗−

1
2

𝑛

∆𝑦
) = 0  (8) 

 
where 𝑝(𝑥, 𝑦, 𝑡) and 𝑞(𝑥, 𝑦, 𝑡) are flow rate, defined as: 
 

𝑝
𝑖+

1
2,𝑗

𝑛 = ℎ
𝑖+

1
2,𝑗

𝑛  𝑢
𝑖+

1
2,𝑗

𝑛
 

∗  

𝑞
𝑖,𝑗+

1
2

𝑛 = ℎ
𝑖,𝑗+

1
2

𝑛  𝑣
𝑖,𝑗+

1
2

𝑛
 

∗  
 (9) 

 
The first-order upwind scheme is used to calculated ℎ 

∗
𝑖+

1
2

,𝑗

𝑛  and ℎ 
∗

𝑖,𝑗+
1
2

𝑛 , as follows. 

 

ℎ 
∗

𝑖+
1
2,𝑗

𝑛 = {

ℎ𝑖,𝑗
𝑛 , 𝑖𝑓 𝑢

𝑖+
1
2,𝑗

𝑛 ≥ 0

ℎ𝑖+1,𝑗
𝑛 , 𝑖𝑓 𝑢

𝑖+
1
2,𝑗

𝑛 < 0
 

ℎ 
∗

𝑖,𝑗+
1
2

𝑛 = {

ℎ𝑖,𝑗
𝑛 , 𝑖𝑓 𝑣

𝑖,𝑗+
1
2

𝑛 ≥ 0

ℎ𝑖,𝑗+1
𝑛 , 𝑖𝑓  𝑣

𝑖,𝑗+
1
2

𝑛 < 0
 

(10) 

Eq. (2) is approximated by: 
 

ℎ̅
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1
2,𝑗

𝑛+1  𝑢
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1
2,𝑗
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1
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1
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𝑛

∆𝑡
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𝑞
𝑖+

1
2,𝑗+

1
2

𝑛   𝑢
𝑖+

1
2,𝑗+

1
2

𝑛 − 𝑞
𝑖+

1
2,𝑗−

1
2

𝑛   𝑢
𝑖+

1
2,𝑗−

1
2

𝑛

∆𝑦
)

+ (
𝑝̅𝑖+1,𝑗

𝑛   𝑢𝑖+1,𝑗
𝑛 − 𝑝̅𝑖,𝑗

𝑛   𝑢𝑖,𝑗
𝑛

∆𝑥
) +

1

2
𝑔 ((ℎ𝑖+1,𝑗

𝑛+1 )
2

− ( ℎ𝑖,𝑗
𝑛+1)

2
)

+ 𝑔ℎ𝑖+1,𝑗
𝑛+1 ( 

𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗

∆𝑥
) + 𝑔 𝑆𝑓 𝑖+

1
2,𝑗

𝑛 = 0 

(11) 

 
where ℎ̅

𝑖+
1
2

,𝑗

𝑛+1 , 𝑞
𝑖+

1
2

,𝑗+
1
2

𝑛 ,  and 𝑝̅𝑖,𝑗
𝑛  are calculated as the average of the values in two grids at one cell. 

ℎ̅
𝑖+

1
2

,𝑗

𝑛+1 =
1

2
(ℎ𝑖,𝑗

𝑛 + ℎ𝑖+1,𝑗
𝑛 ) 

 

𝑞
𝑖+

1
2,𝑗+

1
2

𝑛 =
1

2
(𝑞

𝑖+1,𝑗+
1
2

𝑛 + 𝑞
𝑖,𝑗+

1
2

𝑛 ) 

 

𝑝̅𝑖,𝑗
𝑛 =

1

2
(𝑝

𝑖−
1
2,𝑗

𝑛 + 𝑝
𝑖+

1
2,𝑗

𝑛 ) 

(12) 

Eq. (3) is approximated by: 
 

ℎ̅
𝑖,𝑗+

1

2

𝑛+1
 𝑣

𝑖,𝑗+
1

2

𝑛+1
− ℎ̅

𝑖,𝑗−
1

2

𝑛
 𝑣

𝑖,𝑗−
1

2

𝑛

∆𝑡
+ (

𝑝̅
𝑖+

1

2
,𝑗+

1

2

𝑛
  𝑣

𝑖+
1

2
,𝑗+

1

2

𝑛
− 𝑝̅

𝑖−
1

2
,𝑗+

1

2

𝑛
  𝑣

𝑖−
1

2
,𝑗+

1

2

𝑛

∆𝑥
)

+ (
𝑞

𝑖,𝑗+1

𝑛
  𝑣𝑖,𝑗+1

𝑛 − 𝑞
𝑖,𝑗

𝑛
  𝑣𝑖,𝑗

𝑛

∆𝑦
) +

1

2
𝑔 ((ℎ𝑖,𝑗+1

𝑛+1 )
2

− ( ℎ𝑖,𝑗
𝑛+1)

2
)

+ 𝑔ℎ𝑖,𝑗+1
𝑛+1 ( 

𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗

∆𝑥
) + 𝑔 𝑆𝑓

𝑖,𝑗+
1

2

𝑛 = 0 

 

(13) 

where ℎ̅
𝑖,𝑗+

1
2

𝑛+1 , 𝑝̅
𝑖+

1
2

,𝑗+
1
2

𝑛 ,  and 𝑞𝑖,𝑗
𝑛  are also calculated as the average of the values in two grids at one cell. 

ℎ̅
𝑖,𝑗+

1
2

𝑛+1 =
1

2
(ℎ𝑖,𝑗

𝑛 + ℎ𝑖+1,𝑗
𝑛 ) 

𝑞
𝑖,𝑗

𝑛
=

1

2
(𝑞

𝑖,𝑗+
1

2

𝑛
+ 𝑞

𝑖,𝑗−
1

2

𝑛 ) 
(14) 
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𝑝̅
𝑖+

1

2
,𝑗+

1

2

𝑛
=

1

2
(𝑝

𝑖+
1

2
,𝑗+1

𝑛
+ 𝑝

𝑖+
1

2
,𝑗

𝑛 ) 

 

The explicit form of (8), (11), (13) are expressed in the equations as follows. 

ℎ𝑖,𝑗
𝑛+1 = ℎ𝑖,𝑗

𝑛 −
1

∆𝑡
(

𝑝
𝑖+

1
2,𝑗

𝑛 − 𝑝
𝑖−

1
2,𝑗

𝑛

∆𝑥
) −

1

∆𝑡
 (

𝑞
𝑖,𝑗+

1
2

𝑛 − 𝑞
𝑖,𝑗−

1
2

𝑛

∆𝑦
) 

 

(15) 

 𝑢
𝑖+

1
2,𝑗

𝑛+1 =
1
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1
2,𝑗
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1
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𝑛  𝑢
𝑖−

1
2,𝑗

𝑛 −
1

∆𝑡
(

𝑞
𝑖+

1
2

,𝑗+
1
2

𝑛   𝑢
𝑖+

1
2

,𝑗+
1
2

𝑛 − 𝑞
𝑖+

1
2

,𝑗−
1
2

𝑛   𝑢
𝑖+

1
2

,𝑗−
1
2

𝑛

∆𝑦
)

−
1

∆𝑡
(

𝑝̅𝑖+1,𝑗
𝑛   𝑢𝑖+1,𝑗

𝑛 − 𝑝̅𝑖,𝑗
𝑛   𝑢𝑖,𝑗

𝑛

∆𝑥
) −

1

2∆𝑡
𝑔 ((ℎ𝑖+1,𝑗

𝑛+1 )
2

− ( ℎ𝑖,𝑗
𝑛+1)

2
)

−
1

∆𝑡
𝑔ℎ𝑖+1,𝑗

𝑛+1 ( 
𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗

∆𝑥
) −

𝑔

∆𝑡
 𝑆𝑓 𝑖+

1
2,𝑗

𝑛  

(16) 

 𝑣
𝑖,𝑗+

1
2

𝑛+1 =
1

ℎ̅
𝑖,𝑗+

1
2

𝑛+1 ℎ̅
𝑖,𝑗−

1
2

𝑛  𝑣
𝑖,𝑗−

1
2

𝑛 −
1

∆𝑡
(

𝑝̅
𝑖+

1
2,𝑗+

1
2

𝑛   𝑣
𝑖+

1
2,𝑗+

1
2

𝑛 − 𝑝̅
𝑖−

1
2,𝑗+

1
2

𝑛   𝑣
𝑖−

1
2,𝑗+

1
2

𝑛

∆𝑥
)

−
1

∆𝑡
(

𝑞𝑖,𝑗+1
𝑛   𝑣𝑖,𝑗+1

𝑛 − 𝑞𝑖,𝑗
𝑛   𝑣𝑖,𝑗

𝑛

∆𝑦
) −

1

2∆𝑡
𝑔 ((ℎ𝑖,𝑗+1

𝑛+1 )
2

− ( ℎ𝑖,𝑗
𝑛+1)

2
)

−
1

∆𝑡
𝑔ℎ𝑖,𝑗+1

𝑛+1 ( 
𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗

∆𝑦
) −

𝑔

∆𝑡
 𝑆𝑓 𝑖,𝑗+

1
2

𝑛  

(17) 

 

Eq. (15)-(17) are the numerical solution of 2D SWE Eq. (1)-(3). The same way can be implemented into 
1D SWE by ommiting the 𝑦-term.  

 
3. RESULT AND DISCUSSION 

In this section, we simulate the model of 1D SWE and 2D SWE with dam-break case study then 
analyze the differences beetwen parabolic cross section and rectangular cross section.  

1D Dam-Break Simulation 

In this case, let the channel width is constant 𝑏(𝑥) = 1 and gravitational acceleration is 9.81. 
The spacial and time domain, respectively are 0 ≤ 𝑥 ≤ 200 and 0 ≤ 𝑡 ≤ 10, divided by the step 
size Δ𝑥 = 0.25 and Δ𝑡 = 0.005Δ𝑥. The initial condition of the dam-break for the water level at 
time 𝑡 = 0, as follows. 

ℎ(𝑥, 0) = {
10,   𝑗𝑖𝑘𝑎 𝑥 ≤ 100

2,   𝑗𝑖𝑘𝑎 𝑥 > 100
 (18) 

The initial horizontal velocity is 𝑢(𝑥, 0) = 0, with the hardwall boundary conditions as 
follows. 

𝑢(0, 𝑡) = 𝑢(200, 𝑡) = 0 

ℎ(0, 𝑡) = 10, ℎ(200, 𝑡) = 2 

(1
9) 
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                        (a) 

 

      (b) 

 

    (c) 

Figure 1. The result of 1D dam-break numerical simulation on parabolic cross section open channel at different time. 

(a) at 𝑡 = 0, (b) at 𝑡 = 5, (c) at 𝑡 = 10. 

The result of simulation, seen at Fig. 1, shows that the fluid flow propagates to the right. 
The water depth at the left side decreases over time but contrary with the right side. At 𝑡 = 10, 
the depth distribution becomes more uniform, indicating a gradual spreading of the fluid mass. 

2D Dam-Break Simulation 

 Let the channel width is constant 𝑏(𝑥) = 100 and gravitational acceleration is 9.81. The 
cross section is parabolic with maximum depth 𝑑0 = 20. The spacial and time domain, 
respectively are 0 ≤ 𝑥 ≤ 500, 0 ≤ 𝑦 ≤ 500, and 0 ≤ 𝑡 ≤ 10, divided by the step size Δ𝑥 =
10, Δ𝑦 = 10 and Δ𝑡 = 0.01. The initial condition of the dam-break for the water level at time 𝑡 =
0, as follows. 

𝜂(𝑥, 𝑦, 0) = {
0,   𝑗𝑖𝑘𝑎 𝑥 ≤ 250

10,   𝑗𝑖𝑘𝑎 𝑥 > 250
 (20) 

 

The initial horizontal velocity is 𝑢(𝑥, 𝑦, 0) = 0, with the hardwall boundary conditions as follows. 

𝑢(0, 𝑦, 𝑡) = 𝑢(500, 𝑦, 𝑡) = 𝑣(𝑥, 0, 𝑡) = 𝑣(𝑥, 500, 𝑡) = 0 (21) 

The result for 2D dam-break numerical simulation over an open channel with parabolic cross-
section can be seen at Fig.2.  

The simulation results show that the water begins to flow and fill the right side of the 
channel after the dam breaks. The water surface shape follows the parabolic contour of the 
channel bed, with accumulation at the lowest point.  

Comparison between Dam-break Simulation Over An Open Channel with Parabolic Cross 
Section and Rectangular Cross Section 

In comparing dam-break flow over an open channel with parabolic and rectangular cross 
section, we employ 1D and 2D SWE. The velocity and water depth are analyzed. The comparison 
in 1D SWE can be seen in Fig. 3 and Fig. 4.  



 

 

ISTEK | Volume 14 No. 2 | December 2025: 62-70  

 67 

 

                        (a) 
 

      (b) 

 

    (c) 

Figure 2. The result of 2D dam-break numerical simulation on parabolic cross section open channel at different time. 

(a) at 𝑡 = 0, (b) at 𝑡 = 5, (c) at 𝑡 = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(a) 
 

(b) 

Figure 3. The result of 1D dam-break numerical simulation on parabolic 
cross section open channel at time 𝑡 = 5. (a) for water depth ℎ,                       

(b) for horizontal velocity 𝑢 

Figure 4. The result of 1D dam-break numerical simulation on 
rectangular cross section at time 𝑡 = 5. (a) for water depth ℎ,                       

b) for horizontal velocity 𝑢 
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Tabel 1 presents the value of ℎ and 𝑢 at spesific points in the simulatin domain for each geometry.  

Tabel 1. The comparison of ℎ values at time 𝑡 = 5 

 

Based on Table 1, the simulation results show differences in the water depth ℎ between an open 
channel with parabolic and rectangular cross section at time 𝑡 = 5 at some positions 𝑥. At position 𝑥 =
45 to 𝑥 = 110, the water dept in the parabolic channel is lower because the flow is concentrated in the 
center of the channel. Contrary with that, at position 𝑥 = 115 to 𝑥 = 140 the water depth in parabolic 
channel is higher due to a smoother flow distribution.   

Tabel 2. The comparison of 𝑢 values at time 𝑡 = 5 

 
𝑥 

𝑢   
𝑥 

𝑢 

Parabolic Rectangular  Parabolic Rectangular 

0 0 0  95 5,263 4,914 

45 0 0  100 5,265 4,934 

50 0,033 0,033  105 5,267 4,954 

55 0.822 0,817  110 5,269 4,973 

60 1,731 1,707  115 5,272 4,993 

65 2,661 2,601  120 5,274 5,012 

70 3,605 3,489  125 5,276 5,032 

75 4,519 4,309  130 5,278 5,051 

80 5,158 4,793  135 5,280 4,943 

85 5,259 4,854  140 5,097 4,899 

90 5,261 4,874  145 0 0 

 

The simulation in 2D is also compared between the parabolic and rectangular. Based on the 
data that are used in 2D dam-break simulation above, we get the comparison of water profile, seen in 
Fig. 5.  

 

 

 

 

 

𝑥 

ℎ   

𝑥 

ℎ 

Parabolic Rectangular  Parabolic Rectangular 

0 10 10  95 5,817 5,927 

45 9,966 9,966  100 5,813 5,889 

50 9,265 9,269  105 5,809 5,852 

55 8,514 8,531  110 5,805 5,814 

60 7,805 7,842  115 5,801 5,775 

65 7,141 7,203  120 5,797 5,737 

70 6,535 6,629  125 5,794 5,698 

75 6,042 6,192  130 5,790 5,659 

80 5,837 6,040  135 5,786 5,620 

85 5,824 6,001  140 5,782 5,581 

90 5,820 5,964  145 2 2 
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In the 2D simulation, the parabolic channel produces a curved water surface that spread following the 
shape of bottom topography.  In contrast, the rectangular channel shows a more uniform surface, with 
limited lateral spreading due to its flat, sharp-edged bottom. These differences confirm that channel 
geometry has a significant impact on flow characteristics, influencing the velocity and water depth 
distribution.  

4. CONCLUSION 

This study shows that the modified SWE on an open channel can accurately describe the flow in a 
parabolic channel. The numerical method used is stable and works well for complex shapes. In the 1D 
dam-break case, the water level decrease gradually upstream and becomes more even as the flow moves 
downstream. In 2D case, the water spreads folloving the curved channel bed and collects at the lowest 
poin, showing that channel shape strongly affects the flow. Overall, the open channel with parabolic 
cross section geometry can produces faster and smoother flow with a mor even water surface, while the 
he open channel with rectangular cross section geometry leads to slower flow and sharper changes in 
water depth.  
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