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This literature review aims to explore the development of the Single 
Dose Injection Models by finding their Analytical Solutions. The most 
well-known single-compartment pharmacokinetic model with first-
order elimination was developed by Tang & Xiao in 2007, where the 
elimination part is modified by the Michaelis-Menten kinetics. Years 
later, in 2015 Wu, Li, & Nekka developed the model by considering 
simultaneous elimination and drug distribution in the body, and then 
they modified the more complex model by incorporating endogenous 
production in 2018. These three models employ differential equations 
to depict changes in drug concentration, and not only utilize the 
Lambert W function, but the models also introduce the X function to 
obtain the analytical solutions. The results are expected to provide a 
deeper understanding of drug dynamics in the body and to serve as a 
basis for further research and clinical applications in pharmacokinetics 
as well as to offer deeper insights into drug delivery within the human 
body. 
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1. INTRODUCTION 

Since ancient times, humans have used mathematics to model natural phenomena such as the 
movement of planets and other celestial bodies. However, the use of mathematics to model various 
other phenomena only began to rapidly develop in the 20th century [7]. 

Mathematical modeling helps in solving complex problems and provides useful information 
for decision-making. Through mathematical modeling, predictions about the behavior of a system in 
various situations can be made, the impact of changes on the system can be estimated, and 
understanding of complex phenomena or problems can be enhanced. 

In the book "A First Course in Mathematical Modeling," Giordano & Perrier (2003) explain the 
stages of mathematical modeling: identifying and defining the problem, creating a mathematical model, 
testing the model's accuracy with empirical data or valid alternative models, using the validated model 
for simulation and prediction, and making decisions based on simulation results that align with initial 
goals and available empirical data. 

Initially, mathematical modeling was primarily used by scientists and engineers in the fields of 
engineering and science. Over time, its use has expanded to various other fields, including the medical 
field, particularly pharmacokinetics. Pharmacokinetics studies the movement of drugs within the body 
from administration to excretion [6]. The pharmacokinetic process involves the absorption, 
distribution, metabolism, and elimination of drugs [6][19][5]. 

There are several ways to administer drugs into the body: Two of them are given 
extravascularly by oral and intravascularly by injection of infusion. Some researchers have 
investigated drug dynamics through these two routes by finding the solutions [12][17] as well as 
estimating the parameters that affect directly the dynamics [22][23][24].   

Many studies have focused on drug elimination using mathematical models [6][10][12]. 
However, few have addressed drug metabolism within the body's organs. Metabolism often requires 
enzyme activation, with Michaelis-Menten kinetics as an important concept introduced by Michaelis 
and Menten (1913). This concept explains the relationship between enzyme reaction rate and 
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substrate concentration and is crucial in pharmacokinetic studies for understanding drug metabolism 
by liver enzymes that affect drug effectiveness and potential side effects [14][1][16][8]. 

The elimination process often follows first-order kinetics, where the elimination rate is 
proportional to the amount of drug in the blood [11]. Mathematical models are used to predict and 
understand changes in drug concentration in the body over time after dose administration. 

This literature review aims to explore the development of a single-dose injection model to 
assist in the formulation of more effective and safer dosing strategies. The scope of this study is limited 
to the pharmacokinetics of single-dose administration, assuming the body as a homogeneous unit with 
constant endogenous production, without considering the influence of circadian rhythms. This also 
investigates the single-dose injection model with endogenous production and simultaneous first-order 
elimination and Michaelis-Menten kinetics based on three primary studies: articles written by Tang & 
Xiao (2007), by Wu, Li, & Nekka (2015), and by Wu, Nekka, & Li (2018). 
 
2. INJECTION COMPARTMENT MODEL 

Pharmacokinetics compartment models of drug delivery in the human body are mathematical 
models that describe the distribution and movement of a drug within the human body [6]. The models 
are crucial in understanding the processes of absorption, metabolism, distribution, and elimination of 
drugs, as well as predicting the toxic effects of a substance or compound in the human body. These 
models can also be used to develop effective and safe treatment strategies for patients. 

One of the simplest compartment models is the single compartment model for which the body is 
considered as a single unit with homogeneous characteristics. For instance, organs or tissues 
responsible for drug elimination are assumed to have the same blood flow rate [6]. 

When a drug is administered by injection, it enters the bloodstream without absorption processes, 
the drug is directly distributed within the body, and eliminated following a first-order reaction process 
[6]. Mathematically, the rate of change of drug concentration in the blood when the drug is 
administered by injection can be modeled as 

 

 
𝒅𝑪

𝒅𝒕
=  −𝒌𝑪,  (2.1) 

with the initial condition 
 

 𝑪(𝟎) =
𝑫

𝑽
,  (2.2) 

where 𝑪 is the drug concentration in the blood plasma that depends on time t, 𝑫 is the dose of the drug 
given, 𝑽𝒅 is the volume of drug distribution in the body, and 𝒌 is the constant rate of drug elimination. 
By using the separation of variables in the equation and using the initial condition given in (2.2), the 
solution of (2.1) can be obtained as 
 

 𝑪(𝒕) =
𝑫

𝑽𝒅
𝒆−𝒌𝒕  (2.3) 

 
3. SINGLE DOSE INJECTION MODELS  

This section further discusses the model reviews of Single doses when the drug is given by 
injection. Initially, it only considered metabolism within the body, then it was further developed to 
consider the distribution of the drug within the body. Subsequently, it was expanded to consider the 
presence of endogenous substances naturally produced in the body. 
 

3.1.  The Model with Michaelis-Menten Drug Elimination 

Wagner (1973) conducted extensive research on evidence of nonlinearity in pharmacokinetics 
(the phenomenon where changes in drug dosage do not result in proportional changes in drug 
concentration within the body), including drug metabolism and renal excretion. He also considered the 
nature of the Michaelis-Menten equation and conducted simulations to illustrate it. Several 
compartmental models have been used in recent studies to fit Michaelis-Menten parameters, including 
phenomena in single-dose response data [15]. 

Tang and Xiao (2007) modeled a single-compartment model with Michaelis-Menten elimination 
and drug administration with a single dose (𝐷) given impulsively at time 𝒕𝟎 (drug administration 
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occurs in a very short period, and there is no change in dosage during the observation time, 𝒕𝟎 = 𝟎, 
concentration for 𝒕 >  𝒕𝟎 can be represented by the following differential equation: 

 
𝒅𝑪(𝒕)

𝒅𝒕
=

𝑽𝒎𝒂𝒙𝑪(𝒕)

𝑲𝒎+𝑪(𝒕)
,        𝑪(𝒕𝟎

+) = 𝑪(𝟎) =
𝑫

𝑽𝒅
 , (3.1) 

where 𝑽𝒎𝒂𝒙 is the maximum rate of concentration change (in concentration units per time), 𝑲𝒎 is the 
Michaelis-Menten constant (in concentration units), and 𝑽𝒅 is the volume of drug distribution. To find 
the analytical solution of equation (3.1), the separation of variables method is used so that we gain,  

 
𝟏

𝑽𝒎𝒂𝒙
(𝑲𝒎(𝐥𝐧 (

𝑫

𝑽𝒅
) − (𝐥𝐧(𝑪(𝒕))) +

𝑫

𝑽𝒅
− 𝑪(𝒕)) = 𝒕 − 𝒕𝟎. (3.2) 

The form of equation (3.2) has been extensively studied by Beal (1982). The results suggested 
that the solution of equation (3.1) can be solved analytically through several implicit functions, and in 
his study, there is also a table to calculate 𝐶(𝑡) for given values of 𝑡. Thus, equation (3.2) is not a fully 
analytical solution of equation (3.1) and is not a solution to compute continuous solutions for specific 
time intervals. However, the analytical solution of equation (3.1) can be obtained with the definition 
and properties of the Lambert W function. 

Before using the method to solve the model, we first write some properties of the Lambert W 
function. In the article written by Corless (1996), by definition, the Lambert W function (logarithmic 
product) is a multi-valued inverse function of the equation 𝒇(𝒛)  =  𝒛𝒆𝒛 or mathematically expressed 
as: 
 𝑾(𝒛) = 𝒇−𝟏(𝒛) 𝒘𝒉𝒆𝒓𝒆 𝒇(𝒛) =   𝒛𝒆𝒛. 
From this statement, we can conclude that 
 𝑾(𝒇(𝒛)) = 𝑾(𝒛𝒆𝒛) = 𝒛. 

and 
𝒇(𝑾(𝒛)) = 𝑾(𝒛) 𝐞𝐱𝐩(𝑾(𝒛)) = 𝒛. 

By this definition, we can proceed to find the analytical solution of equation (3.1) by using the 
exponential term to (3.2) and performing algebraic manipulations. we obtain 

 
𝑪(𝒕)

𝑲𝒎
𝐞𝐱𝐩 (

𝑪(𝒕)

𝑲𝒎
) = (

𝑪(𝟎)

𝑲𝒎
𝐞𝐱𝐩 (

𝑪(𝟎)−𝑽𝒎𝒂𝒙(𝒕−𝒕𝟎)

𝑲𝒎
)) . (3.3) 

Applying the Lambert W function, the analytical solution is obtained as 

 𝑪(𝒕) = 𝑲𝒎𝑾 (
𝑪(𝟎)

𝑲𝒎
𝐞𝐱𝐩 (

𝑪(𝟎)−𝑽𝒎𝒂𝒙(𝒕−𝒕𝟎)

𝑲𝒎
)),      (3.4) 

and the drug's half-life is given by: 

 𝒕𝟏/𝟐 =
𝑲𝒎

𝑽𝒎𝒂𝒙
𝐥𝐧(𝟐) +

𝟏

𝟐𝑽𝒎𝒂𝒙
𝑪(𝟎). (3.5) 

3.2.  The Model with Simultaneous Elimination and Michaelis-Menten Kinetics 

Tang and Xiao (2007) modeled a single-compartment injection model with Michaelis-Menten 
elimination kinetics in their research, as previously discussed. However, that model only considered 
drug metabolism at the injection site. This model needs to be further developed to provide more 
comprehensive information about drug kinetics in the body and assist in designing effective and safe 
drug dosages. 

Wu, Li, and Nekka (2015) expanded the model by considering the elimination of the drug from the 
body through the kidneys or liver. Their research not only considered the kinetics of drug metabolism 
and the rate of drug absorption but also the distribution of the drug throughout the body via the 
circulatory system, which can be represented by the following differential equation: 

 𝑉𝑑
𝑑𝐶(𝑡)

𝑑𝑡
= −𝐶𝐿𝑙 −

𝑉𝑚𝑎𝑥𝐶(𝑡)

𝐾𝑚+𝐶(𝑡)
, (3.6) 

With the initial condition  

 𝑪(𝟎+) =
𝑫

𝑽𝒅
= 𝑪𝟎,    (3.7) 

Noticing the inconsistency of the dimensions of the right and the left-hand side equation (3.6), we 
rewrite the equation as  

 
𝒅𝑪(𝒕)

𝒅𝒕
= −

𝑪𝑳𝒍

𝑽𝒅
𝑪(𝒕) −

𝑽𝒎𝒂𝒙𝑪(𝒕)

𝑲𝒎+𝑪(𝒕)
,     𝒕 > 𝟎.   (3.8) 

By using partial fraction decomposition and rearranging, we obtain: 

 (
𝒑𝟏

𝑪(𝒕)
+

𝒑𝟐

𝑪(𝒕)+𝜷
) 𝒅𝑪(𝒕) = −𝒅𝒕,    (3.9) 

where 

 𝒑𝟏 =
𝟏

𝒌𝒆𝒍+𝑪𝑳𝒊𝒏𝒕
,    𝒑𝟐 =

𝑪𝑳𝒊𝒏𝒕

𝒌𝒆𝒍
 

𝟏

𝒌𝒆𝒍+𝑪𝑳𝒊𝒏𝒕
, 𝜷 = 𝑲𝒎

𝒌𝒆𝒍+𝑪𝑳𝒊𝒏𝒕

𝒌𝒆𝒍
 .  (3.10) 

Here 𝑲𝒆𝒍  =  𝑪𝑳𝒍/𝑽𝒅 is the first-order elimination rate constant, and 𝑪𝑳𝒊𝒏𝒕 = 𝑽𝒎𝒂𝒙/𝑲𝒎 represents the 
intrinsic clearance of Michaelis-Menten kinetics [9]. Then, 𝒑𝟏 represents the corresponding time for 
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the drug to be eliminated, and 𝒑𝟐 is the same as p1, but considering the ratio of intrinsic clearance of 
Michaelis-Menten kinetics (𝑪𝑳𝒊𝒏𝒕) and the first-order elimination rate constant ( 𝑲𝒆𝒍). Meanwhile, 𝜷 is 
a concentration obtained by multiplying the Michaelis-Menten constant (𝑲𝒎) by a fraction involving 
the first-order elimination rate constant (𝒌𝒆𝒍) and the intrinsic clearance of Michaelis-Menten kinetics 
(𝑪𝑳𝒊𝒏𝒕). 
By integrating equation (3.9) from time 𝟎+ to time 𝑡, we obtain: 

𝑪(𝒕)𝒑𝟏(𝑪(𝒕) + 𝜷)𝒑𝟐 = (𝑪𝟎)𝒑𝟏(𝑪𝟎 + 𝜷)𝒑𝟐 𝐞𝐱𝐩(−𝒕). (3.11) 
Equation (3.11) is a transcendental equation (a type of equation that is difficult to solve using 
conventional methods). The solution to this equation cannot be easily expressed. However, to help find 
the solution to this equation, Wu, Li, and Nekka (2015) introduced a new function called the X function, 
inspired by the Lambert W function. This function has been used in cases of Michaelis-Menten 
elimination pathways. By using this function, the solution to the equation can be found more easily and 
efficiently. 
Definition 1: 𝑋(𝑡, 𝑝, 𝑞) is defined as the solution to the following equation: 

 (𝑿(𝒕, 𝒑, 𝒒))𝒑 ∙ (𝑿(𝒕, 𝒑, 𝒒))
𝒒

= 𝒕,      (3.12) 

where 𝒑 >  𝟎 and 𝒒 ≥  𝟎 are given constant. The left-hand side of equation (3.12) has the form 
𝒇(𝒙, 𝒑, 𝒒)  =  𝒙𝒑(𝟏 +  𝒙)𝒒 which is positive and monotonically increasing for 𝒙 >  𝟎 ensuring that 𝑿 is 
a well-defined function. Additionally, its derivative is given by: 

𝒅

𝒅𝒕
𝑿(𝒕, 𝒑, 𝒒) =

𝟏

𝒕
(

𝒑

𝑿(𝒕, 𝒑, 𝒒)
+

𝒒

𝟏 + 𝑿(𝒕, 𝒑, 𝒒)
)

−𝟏

> 𝟎. 

This indicates that the function 𝑋 is smooth and strictly increasing for 𝑡 > 0. In this review, the 
function 𝑋 is used to find a closed-form solution of equation (3.8). 
Returning to the previous problem, by dividing both sides of equation (3.11) by 𝜷𝒑𝟏+𝒑𝟐 we obtain: 

 (
𝑪(𝒕)

𝜷
)

𝒑𝟏
(

𝑪(𝒕)

𝜷
+ 𝟏)

𝒑𝟐
= (

𝑪𝟎

𝜷
)

𝒑𝟏
(

𝑪𝟎

𝜷
+ 𝟏)

𝒑𝟐
𝐞𝐱𝐩(−𝒕).       (3.13) 

Using the function X, the solution to the Single Compartment Injection Model with Simultaneous 
Elimination and Michaelis-Menten Elimination Kinetics is as follows: 

 𝑪(𝒕) = 𝜷 ∙ 𝑿 ((
𝑪𝟎

𝜷
)

𝒑𝟏
(

𝑪𝟎

𝜷
+ 𝟏)

𝒑𝟐
𝐞𝐱𝐩(−𝒕) , 𝒑𝟏, 𝒑𝟐) , 𝒕 > 𝟎,         (3.14) 

where 𝑪𝟎 = 𝑫/𝑽𝒅  and 𝒑𝟏, 𝒑𝟐, 𝜷 are as defined in equation (3.10). 

3.3.  The Model with Endogeneous Production Simultaneous First-Order and Michaelis-
Menten Elimination 

Exogenous and endogenous substances refer to the source or origin of a substance in the human 
body. Exogenous substances are those originating from outside the human body, such as food, 
beverages, inhaled air, or externally administered drugs. For example, drugs consumed to treat 
diseases are exogenous substances [4]. 

Endogenous substances are those naturally produced within the human body by organs or 
internal biological processes, such as the insulin hormone produced by the pancreas. Endogenous 
production can occur in response to internal or external stimuli, involving various biochemical 
processes in the body [4]. 

In some cases, drugs administered from outside the body (exogenous) can also be naturally 
produced by the body (endogenous). This means that externally administered drug substances may 
also exist in the body as a result of natural production and be eliminated through parallel pathways. 
Indeed, elimination may involve first-order processes typically through the kidneys, in a manner 
proportional to drug plasma concentration, accompanied by nonlinear Michaelis-Menten kinetics, most 
likely due to metabolism mediated by the drug or internalization [4]. 

In this regard, Wu, Li, and Nekka (2018) further developed their previous model by considering 
the presence of endogenous substances within the body, assuming that the endogenous production of 
drug substances occurs at a constant rate, denoted by 𝑟𝑝𝑟𝑜𝑑 if circadian effects (influence of daily 

biological rhythms, such as sleep patterns, body temperature, blood pressure, and hormone 
production) can be neglected. This can be modeled by the following differential equation 

𝑑

𝑑𝑡
𝐶(𝑡) = 𝑟𝑝𝑟𝑜𝑑 − 𝑘𝑒𝑙𝐶(𝑡) −

1

𝑉𝑑

𝑉𝑚𝑎𝑥𝐶(𝑡)

𝐾𝑚+𝐶(𝑡)
, 𝑡 > 0.   (3.15) 

Like in the previous section, the inconsistency of the dimension of the right and left-hand sides in 
equation (3.15) is found, so we rewrite it as  

 
𝑑

𝑑𝑡
𝐶(𝑡) = 𝑟𝑝𝑟𝑜𝑑 − 𝑘𝑒𝑙𝐶(𝑡) −

𝑉𝑚𝑎𝑥𝐶(𝑡)

𝐾𝑚+𝐶(𝑡)
, 𝑡 > 0, (3.16) 

with 
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 𝐶(0+) = 𝐶ℎ𝑠 + 𝐷
𝑉𝑑

⁄ = 𝐶0      𝑎𝑡    𝑡 = 0+ ,  (3.17) 

where 𝐾𝑒𝑙 , 𝑉𝑚𝑎𝑥 , 𝐾𝑚, 𝑉𝑑, 𝐷 are as defined previously, and 𝐶ℎ𝑠 has the form 

 𝐶ℎ𝑠 = (
1

2
(

𝑟𝑝𝑟𝑜𝑢𝑑

𝑘𝑒𝑙
− 𝐶𝛽 + √(

𝑟𝑝𝑟𝑜𝑢𝑑

𝑘𝑒𝑙
− 𝐶𝛽)

2
+ 4

𝑟𝑝𝑟𝑜𝑢𝑑

𝑘𝑒𝑙
𝐾𝑚)).     (3.18) 

That denotes the initial concentration calculated from the system at homeostasis conditions (the body 
in a constant state). 

It should be noted that the initial concentration can be estimated before drug administration. 
When 𝑟𝑝𝑟𝑜𝑢𝑑 = 0, the current model reverts to the model with simultaneous first-order and Michaelis-

Menten elimination studied in the previous discussion. Additionally, the concentration value 
immediately after drug administration is referred to as the concentration at time zero (Equation 
(3.17)). 
To find the solution to this model, we can first use partial fraction decomposition. Since a single dose is 
added to the system, it is obtained that 𝐶(𝑡)  >  𝐶ℎ𝑠 , so Equation (3.16) can be modified to: 

 (
𝑝

𝐶(𝑡)−𝐶ℎ𝑠
+

𝑞

𝐶(𝑡)+𝐶𝛽
𝑒𝑛) 𝑑𝐶(𝑡) = −𝑑𝑡, (3.19) 

where 

 𝑝 =
1

𝑘𝑒𝑙

𝐶ℎ𝑠+𝐾𝑚

𝐶ℎ𝑠+𝐶𝛽
𝑒𝑛 ,           𝑞 =

1

𝑘𝑒𝑙

𝐶𝛽
𝑒𝑛−𝐾𝑚

𝐶ℎ𝑠+𝐶𝛽
𝑒𝑛 ,      

 
 𝐶𝛽

𝑒𝑛
= 𝐶ℎ𝑠 −

𝑟𝑝𝑟𝑜𝑢𝑑

𝑘𝑒𝑙
+ 𝐶𝛽 .    (3.20) 

The notation 𝑝 and 𝑞 are the coefficients that determine the drug elimination time, and 𝑘𝑒𝑙  is the 

elimination constant, which is the rate at which the drug is eliminated from the body. Furthermore
, 𝐶𝛽

𝑒𝑛

 

is the drug concentration obtained by subtracting the initial concentration calculated from the system 
at homeostasis (𝐶ℎ𝑠) with the endogenous production of the drug occurring at a constant rate  (𝑟𝑝𝑟𝑜𝑑) 

divided by the elimination constant (𝑘𝑒𝑙), then added to 𝐶𝛽 (𝛽 as discussed previously). Integrating 

Equation (3.19) from 0+ to 𝑡 and using exponential term, yields 

 (𝐶(𝑡) − 𝐶ℎ𝑠)𝑝 (𝐶(𝑡) + 𝐶𝛽
𝑒𝑛)

𝑞
= (𝐶0 − 𝐶ℎ𝑠) 𝑝 (𝐶0 + 𝐶𝛽

𝑒𝑛)
𝑞

𝒆−𝒕.    (3.21) 

By dividing both sides of the equation by (𝐶ℎ𝑠  + 𝐶𝛽
𝑒𝑛), we obtain 

 (
𝐶(𝑡)−𝐶ℎ𝑠

𝐶ℎ𝑠 + 𝐶𝛽
𝑒𝑛)

𝑝

 (
𝐶(𝑡)−𝐶ℎ𝑠

𝐶ℎ𝑠 + 𝐶𝛽
𝑒𝑛 + 1)

𝑞

= (
𝐶0−𝐶ℎ𝑠

𝐶ℎ𝑠 + 𝐶𝛽
𝑒𝑛)

𝑝

 (
𝐶0+𝐶𝛽

𝑒𝑛

𝐶ℎ𝑠 + 𝐶𝛽
𝑒𝑛)

𝑞

𝒆−𝒕.  (3.22) 

The closed-form solution of the single dose injection model with endogenous production and 
simultaneous first-order and Michaelis-Menten elimination can be obtained using the 𝑋  function and 
applying the initial conditions from Equation (3.17) as follows 

 𝐶(𝑡) = 𝐶ℎ𝑠 + (𝐶ℎ𝑠 + 𝐶𝛽
𝑒𝑛) ∙ 𝑋 ((

𝐷
𝑉𝑑

⁄

𝐶ℎ𝑠+𝐶𝛽
𝑒𝑛)

𝑝

(
𝐷

𝑉𝑑
⁄

𝐶ℎ𝑠+𝐶𝛽
𝑒𝑛 + 1)

𝑞

𝑒−𝑡 , 𝑝, 𝑞) ,     𝑡 > 0. (3.23) 

 
4. CONCLUSION 

This literature review given in this paper has successfully described the three models and 
their analytical solutions. The models started from the simplest model with the first-order drug 
elimination, then progressed into the more complex model: First considering only metabolism occurs 
within the body, then further developed by also considering the drug distribution, and last, by taking 
into account the endogenous substances that are produced by the body. 

The paper has explored the closed-form analytic solutions of the models, encompassing 
aspects of simultaneous elimination and endogenous production. The Lambert W function has an 
important role in obtaining the analytical solutions for the Michaelis-Menten elimination model, while 
the X function has been introduced to find the closed-form solutions in the more complex models, that 
is when simultaneous elimination is assumed to occur as well as when the endogen production is 
assumed to appear. 

Finally, this study is expected to enhance the understanding of drug dynamics through the 
solution of the model and hopefully provide useful analytical tools for evaluating dosing strategies in 
future medical treatments. The models given in this paper as well as the solutions can serve as a 
foundation for further research and clinical applications in pharmacokinetics and offer deeper insights 
into drug delivery within the human body. 
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