Optimizing Qur'an Recitation Monitoring with Random Forest Algorithm

Optimizing Qur'an Recitation Monitoring with Random Forest Algorithm

Authors

  • Ivan Wijayana Department of Informatics, UIN Sunan Gunung Djati Indonesia
  • Muhammad Ardiansyah Department of Informatics UIN Sunan Gunung Djati Indonesia

DOI:

https://doi.org/10.15575/kjrt.v2i1.227

Keywords:

Classification, Machine Learning, Random Forest, Reciting Al-Qur’an

Abstract

Every Muslim should improve their worship, including reciting the Al-Qur'an. Reciting the Al-Qur'an is a deep spiritual practice that provides spiritual benefits and blessings daily. To maximize the benefits of reciting Al-Qur'an during this holy month, implementing Machine Learning can make a significant contribution. This research explores the application of Machine Learning using the Random Forest algorithm to improve the practice of reciting the Al-Qur'an. By collecting data through surveys using questionnaires, this research identifies important factors that influence an individual's success in completing reading the Al-Qur'an. The research results show that the Random Forest algorithm can be used to predict the number of individuals who have the potential to complete reciting Al-Qur'an with an accuracy value of 80%.

References

D. K. Wardani and M. S. N. Samsu, “Application of Tilawatil Qur’an Method to Improve the Ability Reading Al-Qur’an in Bahrul Ulum Islamic Boarding School,” SCHOOLAR: Social and Literature Study in Education, vol. 2, no. 1, pp. 63–67, Jul. 2022, doi: 10.32764/schoolar.v2i1.1278.

M. Alatiyyah, “Quran Reciter Identification: Techniques and Challenges,” J Theor Appl Inf Technol, vol. 101, no. 16, 2023.

Y. A. Gerhana et al., “Computer speech recognition to text for recite Holy Quran,” in IOP Conference Series: Materials Science and Engineering, 2018. doi: 10.1088/1757-899X/434/1/012044.

T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised Machine Learning: A Brief Primer,” Behav Ther, vol. 51, no. 5, pp. 675–687, Sep. 2020, doi: 10.1016/j.beth.2020.05.002.

M. O. Riedl, “Human‐centered artificial intelligence and machine learning,” Hum Behav Emerg Technol, vol. 1, no. 1, pp. 33–36, 2019, doi: https://doi.org/10.1002/hbe2.117.

S. Polamuri, “How the random forest algorithm works in machine learning,” Retrieved December, vol. 21, 2017.

Y. L. Pavlov, Random forests. Walter de Gruyter GmbH & Co KG, 2019.

A. M. Alagrami and M. M. Eljazzar, “Smartajweed Automatic Recognition of Arabic Quranic Recitation Rules,” Dec. 2020.

N. J. Ibrahim, M. Y. I. Idris, Z. Razak, and N. N. A. Rahman, “Automated tajweed checking rules engine for Quranic learning,” Multicultural Education and Technology Journal, 2013, doi: 10.1108/METJ-03-2013-0012.

A. Alfaries, M. Albahlal, M. Almazrua, and A. Almazrua, “A Rule-Based Annotation System to Extract Tajweed Rules from Quran,” in Proceedings - 2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences, NOORIC 2013, 2015. doi: 10.1109/NOORIC.2013.63.

K. A. Mohammad, A. H. Kandil, A. M. EL-Bialy, and S. A. Fawzi, “Automated Detection and Consistency Analysis of Tajweed Recitation Rules in the Holy Quran,” in 2022 4th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2022, pp. 364–367. doi: 10.1109/NILES56402.2022.9942371.

R. Jumansyah and S. Luckyardi, “Designing virtual reality game for learning Al-Quran,” Journal of Engineering, Science and Technology, vol. 18, no. 1, pp. 227–234, 2023.

M. M. Al Anazi and O. R. Shahin, “A Machine Learning Model for the Identification of the Holy Quran Reciter Utilizing K-Nearest Neighbor and Artificial Neural Networks,” Information Sciences Letters, vol. 11, no. 4, pp. 1093–1102, Jul. 2022, doi: 10.18576/isl/110410.

Nurul Husna Mat Isa, Noor Hazirah Abd Aziz, Mariyah Ishak, Wan Azani Mustafa, and Mohd Nizho Abd Rahman, “Quran Mobile Application: A Structured Review,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 34, no. 2, pp. 117–132, Dec. 2023, doi: 10.37934/araset.34.2.117132.

A. P. Andriyandi, W. Darmalaksana, D. S. adillah Maylawati, F. S. Irwansyah, T. Mantoro, and M. A. Ramdhani, “Augmented reality using features accelerated segment test for learning tajweed,” TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 18, no. 1, pp. 208–216, 2020, doi: 10.12928/TELKOMNIKA.V18I1.14750.

J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Syst Appl, vol. 134, pp. 93–101, Nov. 2019, doi: 10.1016/j.eswa.2019.05.028.

T. S. Lestari and D. A. N. Sirodj, “Klasifikasi Penipuan Transaksi Kartu Kredit Menggunakan Metode Random Forest,” Jurnal Riset Statistika, vol. 1, no. 2, pp. 160–167, Feb. 2022, doi: 10.29313/jrs.v1i2.525.

N. Widjiyati, “Implementasi Algoritme Random Forest Pada Klasifikasi Dataset Credit Approval,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 1, no. 1, pp. 1–7, Apr. 2021, doi: 10.25008/janitra.v1i1.118.

M. R. Raharjo and A. P. Windarto, “Penerapan Machine Learning dengan Konsep Data Mining Rough Set (Prediksi Tingkat Pemahaman Mahasiswa terhadap Matakuliah),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 317, Jan. 2021, doi: 10.30865/mib.v5i1.2745.

Nafisah Nurul Hakim, “Implementasi Machine Learning pada Sistem Prediksi Kejadian dan Lokasi Patah Rel Kereta Api di Indonesia,” Jurnal Sistem Cerdas, vol. 3, no. 1, pp. 25–35, May 2020, doi: 10.37396/jsc.v3i1.58.

M. B. Arya Darmawan, F. Dewanta, and S. Astuti, “Analisis Perbandingan Algoritma Decision Tree, Random Forest, dan Naïve Bayes untuk Prediksi Banjir di Desa Dayeuhkolot,” TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol, vol. 9, no. 1, pp. 52–61, May 2023, doi: 10.15575/telka.v9n1.52-61.

A. Prasetio, M. H. Hasibuan, and P. Sitompul, “Simulasi Penerapan Metode Decision Tree (C4. 5) Pada Penentuan Status Gizi Balita,” Jurnal Nasional Komputasi Dan Teknologi Informasi, vol. 4, no. 3, 2021.

U. Indahyanti, N. L. Azizah, and H. Setiawan, “Pendekatan Ensemble Learning Untuk Meningkatkan Akurasi Prediksi Kinerja Akademik Mahasiswa,” Jurnal Sains dan Informatika, vol. 8, no. 2, Dec. 2022, doi: 10.34128/jsi.v8i2.459.

Downloads

Published

2024-06-20

Issue

Section

Articles
Loading...