Prediction of Skin Diseases using Convolutional Neural Networks as an Effort to Prevent Their Spread in Islamic Boarding School Environments
DOI:
https://doi.org/10.15575/kjrt.v1i2.296Keywords:
convolutional neural network, Machine Learning, skin disease, vgg-16Abstract
Skin disease is a common health problem in Islamic boarding school environments. This disease can spread quickly among students due to close contact and sharing the same facilities. Preventing the spread of skin diseases is a top priority in efforts to maintain the health and welfare of students in Islamic boarding schools. In this research, we propose the use of machine learning techniques to predict skin diseases in Islamic boarding school students. The main goal of this research is to develop a predictive model that can help identify skin diseases quickly and accurately. It is hoped that this will enable the prevention of the spread of skin diseases in the Islamic boarding school environment. The method used in this research involves the following steps: skin disease image data collection, data processing and cleaning, feature extraction from patient data, and machine learning model training and evaluation. We will use a Convolutional Neural Network (CNN) machine learning algorithm to build a predictive model. The dataset used in this research consists of images of melanoma, acne and acne skin diseases. In addition, validation will be carried out using data that has never been seen before to test the performance of the predictive model. It is hoped that the results of this research can make a significant contribution in preventing the spread of skin diseases in the Islamic boarding school environment. With accurate predictive models, health workers in Islamic boarding schools can take appropriate preventive measures to control skin diseases effectively. Apart from that, this research can also be a basis for developing a health information system that supports preventive measures for skin diseases in Islamic boarding schools more widely.
References
Z. Zahtamal, R. Restila, T. Restuastuti, Y. E. Anggraini, dan Y. Yusdiana, “Analisis hubungan sanitasi lingkungan terhadap keluhan penyakit kulit,” Jurnal Kesehatan Lingkungan Indonesia, vol. 21, no. 1, hlm. 9–17, 2022.
D. D. Putri, M. T. Furqon, dan R. S. Perdana, “Klasifikasi Penyakit Kulit Pada Manusia Menggunakan Metode Binary Decision Tree Support Vector Machine (BDTSVM)(Studi Kasus: Puskesmas Dinoyo Kota Malang),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 5, hlm. 1912–1920, 2018.
A. M. Simanullang, “Makalah Machine Learning,” 2021.
M. R. Efrian dan U. Latifa, “IMAGE RECOGNITION BERBASIS CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK MENDETEKSI PENYAKIT KULIT PADA MANUSIA,” Power Elektronik: Jurnal Orang Elektro, vol. 11, no. 2, hlm. 276–282, 2022.
A. Alhamad, A. I. S. Azis, B. Santoso, dan S. Taliki, “Prediksi Penyakit Jantung Menggunakan Metode-Metode Machine Learning Berbasis Ensemble–Weighted Vote,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 5, no. 3, hlm. 352–360, 2019.
Luqman Hakim, Z. Sari, dan H. Handhajani, “Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, hlm. 379–385, Apr 2021, doi: 10.29207/resti.v5i2.3001.
L. Triyono, A. Nur, A. Thohari, I. Hestiningsih, dan A. Yobioktabera, “KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK.”
R. Yohannes dan M. E. Al Rivan, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,” Jurnal Algoritme, vol. 2, no. 2, hlm. 133–144, 2022.
M. A. Hanin, R. Patmasari, R. Yunendah, dan N. Fu’adah, “SISTEM KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) SKIN DISEASE CLASSIFICATION SYSTEM USING CONVOLUTIONAL NEURAL NETWORK (CNN).”
D. D. Putri, M. Tanzil Furqon, dan R. S. Perdana, “Klasifikasi Penyakit Kulit Pada Manusia Menggunakan Metode Binary Decision Tree Support Vector Machine (BDTSVM) (Studi Kasus: Puskesmas Dinoyo Kota Malang),” 2018. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id
M. N. Bajwa dkk., “Computer-aided diagnosis of skin diseases using deep neural networks,” Applied Sciences, vol. 10, no. 7, hlm. 2488, 2020.
I. Wulandari, H. Yasin, dan T. Widiharih, “Klasifikasi citra digital bumbu dan rempah dengan algoritma convolutional neural network (cnn),” Jurnal Gaussian, vol. 9, no. 3, hlm. 273–282, 2020.
H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn): Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),” Jurnal Ilmu Komputer, vol. 9, no. 1, hlm. 7–10, 2020.
A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, dan R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” JEPIN (Jurnal Edukasi Dan Penelitian Informatika), vol. 7, no. 1, hlm. 52–57, 2021.
H. Akbar, D. Aryani, dan S. Junaedi, “Deteksi Kantuk Pengendara Mobil Berbasis Citra Menggunakan Convolutional Neural Networks,” INFORMATIKA, vol. 10, no. 1, hlm. 13–20, 2022.
P. A. Nugroho, I. Fenriana, dan R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (Cnn) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, hlm. 12–20, 2020.
S. Ilahiyah dan A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), vol. 3, no. 2, hlm. 49–56, 2018.
D. M. Wonohadidjojo, “Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih,” Ultimatics: Jurnal Teknik Informatika, vol. 13, no. 1, hlm. 51–57, 2021.
K. Simonyan dan A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ilham Rizky Agustin, Muhammad Bayu Nurdiansyah Putra
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.