CRNN Algorithm and MFCC Feature Extraction in Classifying Hijaiyah Letter Pronunciation: A Systematic Literature Review

CRNN Algorithm and MFCC Feature Extraction in Classifying Hijaiyah Letter Pronunciation: A Systematic Literature Review

Authors

  • Mohammad Putra Fauzan Fatah Department of Informatics, UIN Sunan Gunung Djati

DOI:

https://doi.org/10.15575/kjrt.v3i1.1555

Keywords:

Audio Classification, Al-Qur'an literacy, CRNN, Hijaiyah Letters, MFCC, Voice Recognition

Abstract

The ability to read the hijaiyah letters correctly is an important foundation in learning the Qur'an. However, the low Qur'an literacy in Indonesia indicates the need for technological innovation to support the learning process. This article presents a systematic literature review on the application of the Convolutional Recurrent Neural Network (CRNN) algorithm and the Mel-Frequency Cepstral Coefficients (MFCC) feature extraction technique in speech classification, with a focus on their potential implementation for recognizing the pronunciation of the hijaiyah letters. The analysis was conducted based on ten relevant studies selected using the PRISMA method. The results of the study indicate that MFCC is effective in representing the phonetic characteristics of sounds, including in the Arabic context. Meanwhile, CRNN has proven superior in managing audio data with tempo and sequential structure. The combination of the two has strong potential to build an accurate and adaptive hijaiyah letter sound classification system, especially in supporting speech-based tajweed learning. This study provides a conceptual basis for the development of an artificial intelligence-based Qur'an learning application.

References

[1] I. F. Muslim, S. Ranam, and P. Priyono, “Peningkatan Kemampuan Membaca Alquran dengan Pelatihan,” PUNDIMAS: Publikasi Kegiatan Abdimas, vol. 1, no. 2, pp. 70–73, Jun. 2022, doi: 10.37010/pnd.v1i2.680.

[2] Institut Ilmu Al-Qur’an, “Tim IIQ Jakarta Paparkan Hasil Riset Tingginya Buta Aksara Al-Qur’an di Gedung DPR-MPR RI Senayan,” Institut Ilmu Al-Qur’an Website. Accessed: Jun. 02, 2025. [Online]. Available: https://iiq.ac.id/berita/tim-iiq-jakarta-paparkan-hasil-riset-tingginya-buta-aksara-al-quran-di-gedung-dpr-mpr-ri-senayan/

[3] M. I. Hisyam and B. H. Prasetio, “Klasifikasi Suara Sirene Kendaraan berbasis MFCC untuk Meningkatkan Efisiensi Sistem Keamanan Lalu Lintas,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 7, 2024.

[4] S. Susanti and S. Nurhayati, “Penerapan Metode Iqro’dalam Mengenalkan Huruf Hijaiyah Pada Anak Usia Dini,” WALADUNA: Jurnal Pendidikan Islam Anak Usia Dini, vol. 5, no. 2, pp. 13–23, 2022, doi: https://doi.org/10.12928/waladuna.v5i2.533.

[5] U. Ayvaz, H. Gürüler, F. Khan, N. Ahmed, T. Whangbo, and A. Akmalbek Bobomirzaevich, “Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning,” Computers, Materials & Continua, vol. 71, no. 3, pp. 5511–5521, 2022, doi: 10.32604/cmc.2022.023278.

[6] Z. Kh. Abdul and A. K. Al-Talabani, “Mel Frequency Cepstral Coefficient and its Applications: A Review,” IEEE Access, vol. 10, pp. 122136–122158, 2022, doi: 10.1109/ACCESS.2022.3223444.

[7] N. R. Haddaway, M. J. Page, C. C. Pritchard, and L. A. McGuinness, “PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis,” Campbell Systematic Reviews, vol. 18, no. 2, Jun. 2022, doi: 10.1002/cl2.1230.

[8] M. R. Putra, F. Nurdiyansyah, and A. Y. Rahman, “Klasifikasi Jenis Burung Cucak Berdasarkan Suara Menggunakan MFCC Dan Naive Bayes,” JURNAL FASILKOM, vol. 14, no. 2, pp. 463–470, 2024.

[9] O. V. Putra, Faisal Reza Pradana, and Jordan Istiqlal Qalbi Adiba, “Mad Reading Law Classification Using Mel Frequency Cepstal Coefficient (MFCC) and Hidden Markov Model (HMM),” Procedia of Engineering and Life Science, vol. 2, Dec. 2021, doi: 10.21070/pels.v2i0.1148.

[10] E. Nursholihatun, S. M. Sasongko, and A. Zainuddin, “Identifikasi Suara Menggunakan Metode Mel Frequency Cepstrum Coefficients (MFCC) dan Jaringan Syaraf Tiruan Backpropagation,” DIELEKTRIKA, vol. 7, no. 1, p. 48, Feb. 2020, doi: 10.29303/dielektrika.v7i1.232.

[11] M. Y. Abu Bakar and A. Adiwijaya, “Klasifikasi Teks Hadis Bukhari Terjemahan Indonesia Menggunakan Recurrent Convolutional Neural Network (CRNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 5, p. 907, Oct. 2021, doi: 10.25126/jtiik.2021853750.

[12] M. R. Fatichin, A. R. Hermawan, R. A. S. Siahaan, and R. Indraswari, “Dilated-Convolutional Recurent Neural Network untuk Klasifikasi Genre Musik,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 3, pp. 439–448, 2024, doi: https://doi.org/10.28932/jutisi.v10i3.9347.

[13] S. Ihsanti and W. F. Al Maki, “Klasifikasi Genus Burung Hantu Berdasarkan Suara Menggunakan Convolutional Neural Network,” eProceedings of Engineering, vol. 11, no. 4, 2024.

[14] F. D. Adhinata, D. P. Rakhmadani, and A. J. T. Segara, “Pengenalan Jenis Kelamin Manusia Berbasis Suara Menggunakan MFCC dan GMM,” Journal of Dinda: Data Science, Information Technology, and Data Analytics, vol. 1, no. 1, pp. 28–33, 2021.

[15] M. A. Ma’ruf, A. Aranta, and F. Bimantoro, “Verifikasi Suara Mahasiswa Sebagai Alternatif Presensi Kehadiran Menggunakan Ekstraksi Fitur MFCC Dan Klasifikasi LVQ,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 4, no. 2, pp. 171–181, 2022, doi: https://doi.org/10.29303/jtika.v4i2.211.

[16] F. F. Surenggana, A. Aranta, and F. Bimantoro, “Klasifikasi Mood Musik Menggunakan K-Nearest Neighbor dan Mel Frequency Cepstral Coefficients,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 4, no. 2, pp. 263–276, 2022, doi: https://doi.org/10.29303/jtika.v4i2.191.

[17] N. K. Y. Dewia and I. K. G. Suhartanaa, “Idenfikasi Nada Dasar Kendang Menggunakan MFCC dan KNN,” J. Elektron. Ilmu Komput. Udayana, vol. 11, no. 4, pp. 797–802, 2023.

[18] G. Ajinurseto and N. Islamuddin, “Penerapan metode mel frequency cepstral coefficients pada sistem pengenalan suara berbasis desktop,” Infomatek, vol. 25, no. 1, pp. 11–20, 2023.

[19] T. S. Julian, F. Utaminingrum, and D. Syauqy, “Sistem Voice Command pada Kursi Roda Pintar menggunakan MFCC dan CNN berbasis Jetson TX2,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 11, pp. 5505–5510, 2022.

[20] R. A. N. Diaz, N. L. G. P. Suwirmayanti, and K. Budiarta, “Perbandingan Kualitas Pengenalan Suara untuk Ekstraksi Fitur Menggunakan MFCC dan Spectral,” Naratif : Jurnal Nasional Riset, Aplikasi dan Teknik Informatika, vol. 6, no. 1, pp. 58–63, Jul. 2024, doi: 10.53580/naratif.v6i1.281.

[21] M. N. Aljufri and B. H. Prasetio, “Sistem Deteksi Tingkat Stress Menggunakan Suara dengan Metode Jaringan Saraf Tiruan dan Ekstraksi Fitur MFCC berbasis Raspberry Pi,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 11, pp. 5278–5285, 2022.

[22] A. J. Marbun and F. R. Kodong, “Implementation of Mel-Frequency Cepstral Coefficient As Feature Extraction Method On Speech Audio Data,” Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 8, no. 36, pp. 11839–11848, 2024, doi: https://doi.org/10.31315/telematika.v21i3.12339.

[23] F. Fauziah, I. I. Tritoasmoro, and S. Rizal, “Sistem Keamanan Berbasis Pengenalan Suara Sebagai Pengakses Pintu Menggunakan Metode Mel Frequency Cepstral Coefficient (MFCC),” eProceedings of Engineering, vol. 8, no. 6, 2021.

Downloads

Published

2025-07-17

Issue

Section

Articles
Loading...