Convolutional Neural Network (CNN) for Detecting Al-Qur'an Reciting and Memorizing

Convolutional Neural Network (CNN) for Detecting Al-Qur'an Reciting and Memorizing

Authors

  • Rizal Hadiyansah Department of Informatics, UIN Sunan Gunung Djati Bandung, Indonesia
  • Rafi Andamira Department of Informatics, UIN Sunan Gunung Djati Bandung, Indonesia

DOI:

https://doi.org/10.15575/kjrt.v1i2.235

Keywords:

classification, convolutional neural network, memorizing, reciting, Qur'an

Abstract

This research aims to make it easier to memorize the Koran without having to need other people. Memorizers of the Koran (hafiz) often need other people to memorize them to find out if there are errors in their reading. Therefore, this research utilizes machine learning technology to make it easier to read and memorize the Al-Qur'an using the Convolutional Neural Network (CNN) algorithm. CNN was chosen because it is very good at classifying images and audio and can learn and extract features from raw data, such as image and audio data automatically. As a result, the model created succeeded in distinguishing one verse from another very well. The validation results show that the model can correctly detect 57 verses from 64 recorded data, which means it has an accuracy rate of 89.06%. With this verse classification model, it can then be implemented into an application to help memorize the Al-Qur'an even without using the internet.

References

J. H. Alkhateeb, “A Machine Learning Approach for Recognizing the Holy Quran Reciter,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 7, 2020, doi: 10.14569/IJACSA.2020.0110735.

Y. A. Gerhana dkk., “Computer speech recognition to text for recite Holy Quran,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, hlm. 012044, Des 2018, doi: 10.1088/1757-899X/434/1/012044.

“Arti kata hafiz - Kamus Besar Bahasa Indonesia (KBBI) Online.” https://kbbi.web.id/hafiz (diakses 27 Mei 2023).

“Definition of HAFIZ.” https://www.merriam-webster.com/dictionary/hafiz (diakses 27 Mei 2023).

“Memperbanyak Murojaah | LPK AIKA.” https://lpkaika.umt.ac.id/memperbanyak-murojaah/ (diakses 27 Mei 2023).

D. Indonesia, “Jumlah Penduduk Muslim Indonesia Terbesar di Dunia pada 2022,” Dataindonesia.id. https://dataindonesia.id/ragam/detail/populasi-muslim-indonesia-terbesar-di-dunia-pada-2022 (diakses 27 Mei 2023).

A. Akbar, A. Y. Husodo, A. Zubaidi, dan J. Majapahit, “IMPLEMENTASI GOOGLE SPEECH API PADA APLIKASI KOREKSI HAFALAN AL-QUR’AN BERBASIS ANDROID,” vol. 1, no. 1, 2019.

M. Abdurrodjak, M. H. Mud’is, H. Qodim, I. F. S. R. Khaerani, U. Rosidin, dan B. Busro, “Sound matching on the translation of Al-Quran ayat as a learning media for children using mobile-based fast fourier transform and divide conquer algorithm,” J. Phys. Conf. Ser., vol. 1402, no. 7, hlm. 077060, Des 2019, doi: 10.1088/1742-6596/1402/7/077060.

M. Assisi, A. Septiarini, A. H. Kridalaksana, dan M. Wati, “Rancang Bangun Aplikasi Hafalan Al-Quran dengan Google Speech API Berbasis Android,” J. Rekayasa Teknol. Inf. JURTI, vol. 6, no. 1, hlm. 26, Jul 2022, doi: 10.30872/jurti.v6i1.8006.

G. Samara, E. Al-Daoud, N. Swerki, dan D. Alzu’bi, “The Recognition of Holy Qur’an Reciters Using the MFCCs’ Technique and Deep Learning,” Adv. Multimed., vol. 2023, hlm. 1–14, Mar 2023, doi: 10.1155/2023/2642558.

K. Nahar, R. Khatib, M. Shannaq, dan M. Barhoush, “AN EFFICIENT HOLY QURAN RECITATION RECOGNIZER BASED ON SVM LEARNING MODEL,” Jordanian J. Comput. Inf. Technol., no. 0, hlm. 1, 2020, doi: 10.5455/jjcit.71-1593380662.

N. Ziafat, H. F. Ahmad, I. Fatima, M. Zia, A. Alhumam, dan K. Rajpoot, “Correct Pronunciation Detection of the Arabic Alphabet Using Deep Learning,” Appl. Sci., vol. 11, no. 6, hlm. 2508, Mar 2021, doi: 10.3390/app11062508.

D. N. Fathurrahman, A. B. Osmond, dan R. E. Saputra, “DEEP NEURAL NETWORK UNTUK PENGENALAN UCAPAN PADA BAHASA SUNDA DIALEK TENGAH TIMUR (MAJALENGKA)”.

P. Tridarma dan S. N. Endah, “Pengenalan Ucapan Bahasa Indonesia Menggunakan MFCC dan Recurrent Neural Network,” J. Masy. Inform., vol. 11, no. 2, hlm. 36–44, Nov 2020, doi: 10.14710/jmasif.11.2.34874.

M. Walid dan A. K. Darmawan, “Pengenalan Ucapan Menggunakan Metode Linear Predictive Coding (LPC) Dan K-Nearest Neighbor (K-NN),” vol. 7, no. 1, 2017.

H. Hartono, V. C. Mawardi, dan J. Hendryli, “PERANCANGAN SISTEM PENCARIAN LAGU INDONESIA MENGGUNAKAN QUERY BY HUMMING BERBASIS LONG SHORT-TERM MEMORY,” J. Ilmu Komput. Dan Sist. Inf., vol. 9, hlm. 106, Jan 2021, doi: 10.24912/jiksi.v9i1.11567.

J. J. Huang dan J. J. A. Leanos, “AclNet: efficient end-to-end audio classification CNN.” arXiv, 15 November 2018. Diakses: 22 Juni 2023. [Daring]. Tersedia pada: http://arxiv.org/abs/1811.06669

R. V. Sharan, H. Xiong, dan S. Berkovsky, “Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks,” Sensors, vol. 21, no. 10, hlm. 3434, Mei 2021, doi: 10.3390/s21103434.

A. Wardana dan D. Aldamawan, “Maintaining Religious Harmony through Predicting the Level of Lawlessness using Linear Regression,” vol. 1, no. 1, 2023.

F. F. Rochdiana dan M. R. I. Darmawan, “The Influence of the Use of Social Media on the Intensity of Worshipping the Millenial Generation using Linear Regression,” vol. 1, no. 1, 2023.

Downloads

Published

2023-12-25

Issue

Section

Articles
Loading...